In addition it must be noticed that one of the water molecules $\left[\mathrm{O}\left(W_{1}\right)\right]$ is not involved in cation coordination.
The drawings have been made using the $S T R U$ PLO program (Fischer, 1985).

References

Averbuch-Роuchot, M. T. (1989). Acta Cryst. C45, 1856-1858. Averbuch-Роuchot, M. T. \& Durif, A. (1983). Z. Kristallogr. 164, 307-331.

Averbuch-Pouchot, M. T. \& Durif, A. (1986). Acta Cryst. C42, 932-933.
Enraf-Nonius (1977). Structure Determination Package, version RSXI1M. Enraf-Nonius, Delft, The Netherlands.
Fischer, R. X. (1985). J. Appl. Cryst. 18, 258-262.
International Tables for X-ray Crystallography (1974). Vol. IV, Table 2.2B. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Main, P., Hull, S. E., Lessinger, L., Germain, G., Declercq, J.-P. \& Woolfson, M. M. (1977). MULTAN77. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.

Acta Cryst. (1990). C46, 13-15

Room-Temperature Structure of Diaquaoctafluorocopper(II)diiron(III)

By M. Leblanc and G. Ferey
Laboratoire des fluorures, UA 449, Faculté des Sciences, 72017 Le Mans CEDEX, France

(Received 5 December 1988; accepted 4 April 1989)

Abstract

CuFe}_{2} \mathrm{~F}_{8}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}, M_{r}=363 \cdot 25\), monoclinic, $C 2 / c, a=7.541$ (3), $b=7.501$ (3), $c=13.027$ (7) \AA, β $=90.52(4)^{\circ}, \quad V=736.8(15) \AA^{3}, \quad Z=4, \quad D_{x}=$ $3.28 \mathrm{Mg} \mathrm{m}^{-3}, \quad$ Мо $K \alpha, \quad \lambda=0.71069 \AA, \quad \mu=$ $6.88 \mathrm{~mm}^{-1}, F(000)=692, R=0.036$ for 2321 unique observed reflections, hydrothermal growth. The room-temperature structure of $\mathrm{CuFe}_{2} \mathrm{~F}_{8}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ derives from that of $\mathrm{Fe}_{3} \mathrm{~F}_{8}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$. It is described in terms of infinite $\left[\mathrm{FeF}_{4 / 2} \mathrm{~F}_{2}\right]_{n}$ layers of corner-sharing octahedra connected by copper polyhedra or in terms of shifted $\left[\mathrm{CuF}_{4 / 2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}, 2 \mathrm{FeF}_{6 / 2}\right]$ Kagomé layers. Copper octahedra are so strongly distorted \{two short $\mathrm{Cu}-\mathrm{O}$ distances [1.935 (2) A.], two short $\mathrm{Cu}-\mathrm{F}$ distances $[1 \cdot 909$ (1) \AA] and two long $\mathrm{Cu}-\mathrm{F}$ distances $[2 \cdot 451(2) \AA]\}$ that the coordination of copper is better described by a $\mathrm{CuF}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ square plane, as shown by a bond-valence analysis.

Introduction. Several $M^{\mathrm{II}} \mathrm{Fe}_{2} \mathrm{~F}_{8}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ phases with M $=\mathrm{Fe}, \mathrm{Mn}$ were recently grown by hydrothermal synthesis (Herdtweck, 1983; Leblanc, Ferey, Calage \& De Pape, 1984). Owing to the presence in the structure of triangles of corner-sharing octahedra, frustration of antiferromagnetic interactions occurs and peculiar magnetic properties can be observed (Guillot, Marchand, Leblanc \& Ferey, 1987), for example, 'idle spin' behaviour of Fe^{2+} was evidenced in $\mathrm{Fe}_{3} \mathrm{~F}_{8}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$. We report here the structure of $\mathrm{CuFe}_{2} \mathrm{~F}_{8}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$, in which the Jahn-Teller distortion of Cu^{2+} octahedra is expected to influence the superexchange $\mathrm{Fe}-\mathrm{F}-\mathrm{Cu}$ angles and therefore the magnetic properties.

0108-2701/90/010013-03\$03.00

Experimental. Hydrothermal growth from CuF_{2} and FeF_{3} in $40 \% \mathrm{HF}, 743 \mathrm{~K}, 185 \mathrm{MPa}, 5 \mathrm{M} \mathrm{NaF}$ solution, $\left(\mathrm{NaF} / \mathrm{CuF}_{2} / \mathrm{FeF}_{3}\right)=(1 / 1 / 2)$. Prismatic lightgreen crystal $0.05 \times 0.04 \times 0.14 \mathrm{~mm}$. Data collected on a Siemens AED-2 four-circle diffractometer, $\omega-2 \theta$ step scan mode in N steps of $\Delta \omega^{\circ}, 37 \leq N \leq 50$, $0.023 \leq \Delta \omega \leq 0.027$. Time per step: 2 s. Profile-fitting data analysis (Clegg, 1981); isotropic linewidth $\omega=$ $(0.85+0.05 \tan \theta)^{\circ}$. Aperture $D=4.0 \mathrm{~mm}$. Lattice constants based on 24 reflections at $2 \theta \simeq 30^{\circ}$. Absorption correction by the Gauss method, $A_{\max }=$ $0.76, A_{\text {min }}=0.64$. Intensity measurement of one independent set to $2 \theta_{\text {max }}=90^{\circ}$ within the range -14 $\leq h \leq 14,0 \leq k \leq 14,0 \leq l \leq 25$. Standard reflections $400,008,0 \overline{4} 1$, intensity variation $1 \cdot 0 \%, 3478$ reflections measured, 2321 independent reflections used for refinements $[|F|>6 \boldsymbol{\sigma}(|F|)]$. Structure solved from Patterson interpretation with SHELXS86 program (Sheldrick, 1985). F magnitudes used in leastsquares refinements: 70 parameters refined; mean $\Delta / \sigma=0.007$, max. $\Delta / \sigma=0.070$; secondary-extinction factor: $x=1.6(2) \times 10^{-7}$; atomic scattering factors for H, O, F, Fe, Cu from International Tables for X-ray Crystallography (1974); calculations with SHELX76 (Sheldrick, 1976) on a MicroVAX II computer. Patterson interpretation gives a solution with two metallic atoms. Then, refinements of atomic positions and isotropic thermal motion, followed by Fourier or difference Fourier maps, lead to the localization of all non-H atoms ($R=0.075$). The residual decreases to $R=0.037$ when refining the anisotropic thermal parameters. Positions of \mathbf{H} atoms in two

Table 1. Fractional coordinates and equivalent isotropic temperature factors $\left(\AA^{2}\right)$ with e.s.d.'s in parentheses

	x	y	z	$B_{\text {eq }}$
Cu		$\frac{1}{4}$	0	1.14 (1)*
Fe	$0 \cdot 2500$ (1)	0.0449 (1)	$0 \cdot 2526$ (1)	0.64 (1)*
F(1)	$0 \cdot 3016$ (2)	$0 \cdot 2964$ (2)	$0 \cdot 2680$ (1)	1.48 (5)*
F(2)	$0 \cdot 2536$ (2)	$0 \cdot 0752$ (2)	$0 \cdot 1065$ (1)	1.64 (5)*
F(3)	$0 \cdot 2470$ (2)	0.0243 (3)	$0 \cdot 3977$ (1)	1.77 (5)*
F(4)	0	0.0987 (3)	${ }_{\frac{1}{4}}$	1.67 (7)*
F(5)	0	0.4946 (3)	$\frac{1}{4}$	1.57 (7)*
$\mathrm{O}(W)$	0.4934 (3)	$0 \cdot 2500$ (3)	$0 \cdot 5014$ (2)	2.95 (9)*
H(1)	0.420 (6)	$0 \cdot 170$ (6)	0.461 (3)	2.0 (6)
H(2)	0.073 (6)	$0 \cdot 166$ (6)	0.458 (3)	2.0 (6)
${ }^{*} B_{\text {eq }}=(4 / 3) \sum_{i} \sum_{j} \beta_{i j}\left(\mathbf{a}_{i} \cdot \mathbf{a}_{j}\right)$ (Hamilton, 1959).				

Table 2. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ with e.s.d.'s in parentheses

$2 \times \mathrm{Cu}-\mathrm{F}(2)$	1.909 (1)	$\mathrm{Fe}-\mathrm{F}(1)$	1.922 (1)
$2 \times \mathrm{Cu}-\mathrm{F}(3)$	2.451 (2)	$\mathrm{Fe}-\mathrm{F}\left(1^{\prime}\right)$	1.936 (1)
$2 \times \mathrm{Cu}-\mathrm{O}(W)$	1.935 (2)	$\mathrm{Fe}-\mathrm{F}(2)$	1.917 (1)
		$\mathrm{Fe}-\mathrm{F}(3)$	1.897 (1)
		$\mathrm{Fe}-\mathrm{F}(4)$	1.928 (1)
		$\mathrm{Fe}-\mathrm{F}(5)$	1.923 (1)
			1.921
$\mathrm{O}(W)-\mathrm{H}(1)$	0.97 (5)		
$\mathrm{O}(W)-\mathrm{H}(2)$	0.96 (5)		
$\mathrm{F}(3)-\mathrm{H}(1)$	1.89 (5)		
$\mathrm{F}(3)-\mathrm{H}(2)$	1.87 (5)		
$\mathrm{H}(1)-\mathrm{H}(2)$	1.64 (9)		
$\mathrm{Fe}-\mathrm{F}(2)-\mathrm{Cu}$	143.4 (1)	$\mathrm{O}(W)-\mathrm{H}(1)-\mathrm{F}(3)$	171 (4)
$\mathrm{Fe}-\mathrm{F}(3)-\mathrm{Cu}$	127.6 (1)	$\mathrm{O}(W)-\mathrm{H}(2)-\mathrm{F}(3)$	166 (5)
$\mathrm{Fe}-\mathrm{F}(1)-\mathrm{Fe}$	$152 \cdot 8$ (1)	$\mathrm{H}(1)-\mathrm{O}(W)-\mathrm{H}(2)$	114 (4)
$\mathrm{Fe}-\mathrm{F}(4)-\mathrm{Fe}$	155.8 (1)		
$\mathrm{Fe}-\mathrm{F}(5)-\mathrm{Fe}$	157.4 (1)		

Table 3. Valence-bond analysis of $\mathrm{CuFe}_{2} \mathrm{~F}_{8}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ using the Zachariasen law for metal-anion bonds and the Brown-Shannon law for $\mathrm{O}-\mathrm{H}$

F(1)	Cu	Fe	H(1)	H(2)	$\sum_{1.00}$	\sum_{1}
		$0.51{ }^{\text {a }}$				
		${ }^{0.499^{a}}$				
F(2)	$\begin{aligned} & 0.45^{a} \\ & 0.45^{a} \end{aligned}$	$0.51{ }^{\text {a }}$			0.96	1
F(3)	$\begin{aligned} & 0 \cdot 10^{a} \\ & 0 \cdot 10^{a} \end{aligned}$	$0.54{ }^{\text {a }}$	$[0.20]^{\text {c }}$	[0.20] ${ }^{\text {c }}$	1.04	1
F(4)		$0.50(\times 2)^{\text {a }}$			1.00	1
F(5)		$0.50(\times 2)^{\text {a }}$			1.00	1
$\mathrm{O}\left({ }^{(}\right)$	$0.49^{\text {a }}$		$0.80^{\text {b }}$	$0.80{ }^{\text {b }}$	2.09	3
Σ	2.08	3.05	1	,		
$\sum_{\text {expected }}$	2	3	1	1		

(a) $s=0.333 \exp \left[-\left(2.023-d_{i}\right) / 0.37\right]$ for $\mathrm{Cu}-\mathrm{F}$ (Pannetier, unpublished results), $s=0.5 \exp \left[-\left(1.927-d_{i}\right) / 0.37\right]$ for $\mathrm{Fe}-\mathrm{F}$ (Pannetier, unpublished results), $s=\exp \left[-\left(d_{i}-1.65\right) / 0 \cdot 40\right]$ for $\mathrm{Cu}-\mathrm{O}$ (Brown, 1981). (b) $s=\left(d_{j} /\right.$ $0.87)^{2 \cdot 2}$ for $\mathrm{O}-\mathrm{H}$ (Brown, 1981). Owing to the large uncertainty in the observed $\mathrm{O}-\mathrm{H}$ distance, the man value $d_{\mathrm{O}-\mathrm{H}}=0.96 \AA$ was taken. (c) Values in square brackets correspond to the difference $1.00-0.80$ (expected - calculated) since $s_{\mathrm{H}-\mathrm{F}}$ is not available.
$8(f)$ sites were then found from a difference Fourier map calculated from data limited to $\sin \theta=0.4$. Refinement of their atomic coordinates and isotropic thermal parameter (fixed equal for both positions) leads to a final $R=0.036, w R=0.040, w=1.69$ /
$\left[\sigma^{2}\left(\left|F_{o}\right|\right)+0.00039 F_{o}^{2}\right]$. Max. and min. heights in final difference map 0.93 and $-1.52 \mathrm{e}^{\AA^{-3}}$.

Discussion. The final atomic coordinates and thermal parameters are given in Table 1.* Characteristic interatomic distances and angles are listed in Table 2. The structure, presented in Fig. 1, is very similar to that of $\mathrm{Fe}_{3} \mathrm{~F}_{8}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(a^{\prime} \simeq b^{\prime} \simeq c^{\prime} \simeq 7.5 \AA, \beta \simeq 120^{\circ}\right)$ with the cell relationships: $a \simeq a^{\prime}, b \simeq b^{\prime}, c \simeq 0.5 \times$ $\left(-a^{\prime}+c^{\prime}\right)$. A cationic order arises between Fe^{3+} and Cu^{2+} : layers of corner-sharing FeF_{6} octahedra (at z $=\frac{1}{4}$ and $\frac{3}{4}$) are bonded by copper polyhedra. The mean $\mathrm{Fe}-\mathrm{F}$ distance (Table 2) corresponds to the sum of the ionic radii of $\mathrm{Fe}^{3+}(0 \cdot 645 \AA)$ and $\mathrm{F}^{-}(1-285 \AA)$. Owing to the Jahn-Teller effect, the $\mathrm{CuF}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ octahedra are strongly elongated: they present two short $\mathrm{Cu}-\mathrm{F}(2)$ distances $[d=1.909$ (1) \AA], two short $\mathrm{Cu}-\mathrm{O}(W)$ distances $[d=1.935$ (2) \AA] and two long $\mathrm{Cu}-\mathrm{F}$ distances [$d=2 \cdot 451$ (2) \AA]. A valence-bond analysis (Table 3) shows that the four short distances correspond to 90% of the bond strength s given by Cu^{2+}. So, the coordination of copper can also be described as a $\mathrm{CuF}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ square plane. Indeed, the $\mathrm{F}(3)$ atoms, which correspond to the long $\mathrm{Cu}-\mathrm{F}$ distances, are mainly bonded $[90 \%$ of the bond strength of $\mathrm{F}(3)$] to Fe^{3+} and H atoms $\left[d_{\mathrm{H} \cdots \mathrm{F}}=\right.$ 1.88 (5) \AA] of the water molecules $\left[d_{\mathrm{O}-\mathrm{H}}=\right.$ 0.96 (5) \AA]. Such typical distances have already been encountered in $\mathrm{CuF}_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ (Abrahams \& Prince, 1962) and $\mathrm{CuWO}_{3} \mathrm{~F}_{2}$ (Moutou, Francisco, Chaminade, Pouchard \& Hagenmuller, 1986). The superexchange angles are about 155° for $\mathrm{Fe}-\mathrm{F}-\mathrm{Fe}$ but

Fig. 1. (010) projection of the structure. Hatched Cu^{2+} polyhedra lie at $x=\frac{3}{4}$.
decrease to $143.4(1)^{\circ}$ for $\mathrm{Fe}-\mathrm{F}(2)-\mathrm{Cu}$ and $127.6(1)^{\circ}$ for $\mathrm{Fe}-\mathrm{F}(3)-\mathrm{Cu}$. It is expected that the magnetic coupling constant $J_{\mathrm{Fe}-\mathrm{F}-\mathrm{Cu}}$ could be weak compared with $J_{\mathrm{Fe}-\mathrm{F}-\mathrm{Fe}}$ and could lead to interesting magnetic properties. A study of these properties is currently in progress.

References

Abrahams, S. C. \& Prince, E. (1962). J. Chem. Phys. 36(1), 50-55.
Brown, I. D. (1981). Structure and Bonding in Crystals, Vol. 2, edited by M. A. O’Keeffe \& A. Navrotsky, pp. 1-29, and references therein. New York: Academic Press.
Clegg, W. (1981). Acta Cryst. A37, 22-28.

Gullot, M., Marchand, A., Leblanc, M. \& Ferey, G. (1987). J. Phys. C, 20, 2405-2414.

Hamilton, W. C. (1959). Acta Cryst. 12, 609-610.
Herdtweck, E. (1983). Z. Anorg. Allg. Chem. 501(6), 131-135.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Leblanc, M., Ferey, G., Calage, Y. \& De Pape, R. (1984). J. Solid State Chem. 53, 360-368.
Moutou, J. M., Francisco, R. H. P., Chaminade, J. P., Pouchard, M. \& Hagenmuller, P. (1986). Z. Anorg. Allg. Chem. 539, 165-174.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Sheldrick, G. M. (1985). SHELX86. In Crystallographic Computing 3, edited by G. M. Sheldrick, C. Kruger \& R. Goddard, pp. I75-189. Oxford Univ. Press.

Acta Cryst. (1990). C46, 15-18

Room-Temperature Structures of $\mathbf{O x o c o p p e r (I I) ~ V a n a d a t e (V) ~ H y d r a t e s , ~}$ $\mathrm{Cu}_{3} \mathrm{~V}_{2} \mathrm{O}_{8}\left(\mathrm{H}_{2} \mathrm{O}\right)$ and $\mathrm{CuV}_{2} \mathrm{O}_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)_{\mathbf{2}}$

By M. Leblanc and G. Ferey
Laboratoire des fluorures, UA 449, Faculté des Sciences, 72017 Le Mans CEDEX, France

(Received 5 December 1988; accepted 6 April 1989)

Abstract

Cu}_{3} \mathrm{~V}_{2} \mathrm{O}_{8}\left(\mathrm{H}_{2} \mathrm{O}\right), \quad M_{r}=438 \cdot 51\), monoclinic, $P 2_{1} / m, a=7.444$ (1), $b=6.658$ (1), $c=7.759$ (1) \AA, $\beta=93.57(1)^{\circ}, \quad V=383.8(2) \AA^{3}, \quad Z=2, \quad D_{x}=$ $3.20 \mathrm{Mg} \mathrm{m}^{-3}, \quad$ Mo $K \alpha, \quad \lambda=0.71069 \AA, \quad \mu=$ $10.5 \mathrm{~mm}^{-1}, \quad F(000)=414.0, \quad R=0.047$ for 1307 unique reflections. $\quad \mathrm{CuV}_{2} \mathrm{O}_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}, \quad M_{r}=297 \cdot 47$, monoclinic, $P 2 / c, a=5.617$ (1),$b=5.595$ (1),$c=$ 11.333 (2) $\AA, \beta=91.04$ (1) ${ }^{\circ}, V=356.1$ (2) $\AA^{3}, Z=2$, $D_{x}=2.77 \mathrm{Mg} \mathrm{m}^{-3}, \quad$ Мо $K \alpha, \quad \lambda=0.71069 \AA, \quad \mu=$ $5.4 \mathrm{~mm}^{-1}, F(000)=286, R=0.045$ for 1355 unique reflections. Crystal hydrothermal growth was from $\mathrm{Cu}_{2} \mathrm{O}$ and $\mathrm{NH}_{4} \mathrm{VO}_{3}$ in a $2.5 \mathrm{M} \mathrm{NH}_{4} \mathrm{HF}_{2}$ solution. In $\mathrm{Cu}_{3} \mathrm{~V}_{2} \mathrm{O}_{8}\left(\mathrm{H}_{2} \mathrm{O}\right)$, copper atoms adopt either a square planar or a fivefold prismatic coordination. Dimeric entities are formed by edge sharing CuO_{5} and $\mathrm{CuO}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)$ polyhedra. These groups are linked by CuO_{4} square planes and by pyrovanadate $\left(\mathrm{V}_{2} \mathrm{O}_{7}\right)^{4-}$ di-tetrahedra. The structure of $\mathrm{CuV}_{2} \mathrm{O}_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ consists of infinite chains of $\left[\mathrm{VO}_{3 / 2} \mathrm{O}\right]_{2 n}$ tetrahedra connected by isolated $\mathrm{CuO}_{2 / 2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ square planes. In both structures, the location of the oxygen of water molecules can be predicted by valence bond analysis.

Introduction. As part of a general study concerning the hydrothermal synthesis of minerals and their by-products potentially interesting for their magnetic or electric properties, we focused our attention on several copper vanadates, hydrated $\left[\mathrm{Cu}_{3} \mathrm{~V}_{2} \mathrm{O}_{8} .3 \mathrm{H}_{2} \mathrm{O}\right.$:
voiborthite (Struppler, 1965; Leonardsen \& Petersen, 1974)] or anhydrous $\left[\mathrm{Cu}_{3} \mathrm{~V}_{2} \mathrm{O}_{8}\right.$: macbirneyite (Hughes, Christian, Finger \& Malinconico, 1987)].
Hydrothermal growth of these copper vanadates was performed at low temperature (493 K) in ammonium fluoride solution. A new compound $\mathrm{Cu}_{3} \mathrm{~V}_{2} \mathrm{O}_{8}\left(\mathrm{H}_{2} \mathrm{O}\right)$ resulted as the major constituent and a small amount of dark green crystals of $\mathrm{CuV}_{2} \mathrm{O}_{6}-$ $\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ was also produced. Powder samples of this last compound had already been prepared by crystallization from a solution of copper sulfate and ammonium or sodium vanadate (Fleury, 1966).
The structures of $\mathrm{Cu}_{3} \mathrm{~V}_{2} \mathrm{O}_{8}\left(\mathrm{H}_{2} \mathrm{O}\right)$ and $\mathrm{CuV}_{2} \mathrm{O}_{6}$ $\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ are established by X-ray single-crystal diffraction and presented here.

Experimental. Hydrothermal growth in a Teflon digestion autoclave, from $\mathrm{Cu}_{2} \mathrm{O}$ and $\mathrm{NH}_{4} \mathrm{VO}_{3}$ in $2.5 \mathrm{M} \mathrm{NH}_{4} \mathrm{HF}_{2}$ solution, $493 \mathrm{~K}, 36 \mathrm{~h}$. Data collected on a Siemens AED2 four-circle diffractometer, profile-fitting data analysis (Clegg, 1981). Structures solved from direct methods with Tang option of SHELX76 program (Sheldrick, 1976). F magnitudes used in least-squares refinements. Hydrogen atoms were not located. Atomic scattering factors for O, Cu and V from International Tables for X-ray Crystallography (1974); calculations with SHELX76 program (Sheldrick, 1976) on a MicroVAX II computer.

